钙钛矿材料在光伏发电领域风生水起,在短短十年内实现了从3.8%到25.5%的光电转换效率的蜕变,其发展速度已超过多晶硅、CdTe、CIGS等商业化应用的薄膜太阳能电池。在诸多钙钛矿体系中,甲脒钙钛矿太阳能电池具有合适的禁带宽度,较宽的光谱响应以及良好的热稳定性,是突破光电效率瓶颈最有潜力的材料之一。然而,传统的低温溶液制备法获得的钙钛矿薄膜由液相到固相的快速结晶过程容易产生大量的缺陷,如晶界、空位以及反位缺陷等,限制了光电效率的进一步提高,同时也导致电池稳定性差。钙钛矿表面缺陷数量甚至比体缺陷高一个数量级,因此提高活性层的晶体质量,减少表面缺陷对实现甲脒钙钛矿太阳能电池的商业化尤为重要。
2022年,该课题组进一步证实了低维钙钛矿构筑对FAPbI3钙钛矿太阳能电池性能的调控作用。研究人员从分子结构性质调控出发,将相对短链的环丙甲脒盐酸盐(CPAH)应用于FAPbI3钙钛矿表面缺陷钝化研究。在避免长烷基链绝缘效应的基础上,CPAH中环丙基的空间效应使得三维钙钛矿表面诱导生成更为稳定的二维钙钛矿,所制备的二维/三维钙钛矿薄膜在能级、薄膜形貌及缺陷态密度等性质方面均得到有效调控。二维钙钛矿钝化层可有效抑制电荷复合并促进电荷转移,因此器件最优开路电压损失降低至0.34 eV,能量转换效率达到22.8%,同时器件的湿、热和光稳定性显著提高。
2021年,山东大学酒同钢课题组在甲脒钙钛矿太阳电池研究方面取得新进展,他们将维度调控和缺陷钝化相结合,采用后处理的方式在纯甲脒钙钛矿表面引入4-氯苯甲脒盐酸盐,其对氯结构诱导钙钛矿二次生长形成1D纳米棒状钙钛矿,有效的填补3D钙钛矿的晶界以及空位缺陷,减小了非辐射复合损失,电压损失降低至0.35 eV, 实现了21.95%的光电转换效率。同时1D钙钛矿的优异稳定性可以保护3D钙钛矿太阳能电池免受环境水汽的侵蚀,未封装器件的光、热和湿稳定得到显著改善。